電子發燒友網報道(文/梁浩斌)在以碳化硅和氮化鎵為主的第三代半導體之后,氧化鎵被視為是下一代半導體的最佳材料之一。氧化鎵具有多種同分異構體,其中β-Ga2O3(β相氧化鎵)最為穩定,也是目前在半導體應用中被研究最多,距離商業化應用最近的一種。(芯片求職網)
氧化鎵本身的材料特性極為優異。我們都知道第三代半導體也被稱為寬禁帶半導體,而第四代半導體的一個重要特性就是“超寬禁帶”,禁帶寬度在4eV以上(金剛石5.5eV,β-Ga2O3 禁帶寬度4.2-4.9eV),相比之下,第三代半導體中碳化硅禁帶寬度僅為3.2eV,氮化鎵也只有3.4eV。更寬的禁帶,帶來的優勢是擊穿電場強度更大,反映到器件上就是耐壓值更高,同樣以主流的β結構Ga2O3 材料為例,其擊穿電場強度約為8MV/cm,是硅的20倍以上,相比碳化硅和氮化鎵也高出一倍以上。
在應用層面上,氧化鎵主要被應用于光電以及高功率的領域。由于氧化鎵高溫下性能穩定,有高的可見光和紫外光的透明度,特別是在紫外和藍光區域透明,因此日盲紫外探測器是目前氧化鎵比較確定的一條應用路線。
此前在今年8月,美國商務部工業和安全局的文件中披露,美國將對氧化鎵和金剛石兩種超寬禁帶半導體襯底實施出口管制,也足以證明第四代半導體的重要性。
而近日,中國科大微電子學院龍世兵教授課題組兩篇關于氧化鎵器件的研究論文被IEEE 國際電子器件大會接收,分別涉及了氧化鎵器件在功率以及光電領域的應用進展。
在氧化鎵功率應用中,如何開發出有效的邊緣終端結構,緩解肖特基電極邊緣電場是目前氧化鎵SBD研究的熱點。由于氧化鎵P型摻雜目前尚未解決,PN結相關的邊緣終端結構一直是難點。
龍世兵教授課題組基于氧化鎵異質PN結的前期研究基礎,成功將異質結終端擴展結構應用在氧化鎵SBD,并提高了器件的耐壓能力。在通過一系列優化后,器件實現了2.9 mΩ·cm2的低導通電阻和2.1kV的高擊穿電壓,其功率品質因數高達1.52 GW/cm2。
光電應用中,響應度和響應速度是光電探測器的兩個關鍵的性能參數,然而這兩個指標之間存在著制約關系,此消彼長。由于缺乏成熟的材料缺陷控制技術,該問題在以氧化鎵材料為代表的超寬禁帶半導體探測器中尤為突出,這次公布的論文就是為了緩解這個問題。
龍世兵教授團隊通過引入額外的輔助光源實現對向光柵(OPG)調控方案,提出了一種光電探測器芯片內千萬像素共享一顆輔助LED即可緩解響應度與響應速度之間的制約關系的策略,對光電探測芯片綜合性能的提升有重要的參考意義。
不過另一方面,氧化鎵的量產難點主要是大尺寸高質量的β相氧化鎵襯底難以制造,襯底缺陷難以控制,目前適用于半導體器件的氧化鎵晶圓距離量產還十分遙遠。
今年12月,國內的銘鎵半導體宣布使用導模法成功制備了高質量的4英寸β相氧化鎵單晶,完成了4英寸氧化鎵晶圓襯底技術突破,并成功進行多次重復實驗,成為國內首家掌握4英寸β相氧化鎵單晶襯底生長技術的公司。
海外方面,今年8月,日企Novel Crystal表示預計將在2025年開始量產4英寸氧化鎵晶圓,到2028年開始量產8英寸氧化鎵晶圓,并且最終成本可以降至碳化硅的三分之一。(芯片求職網站)
目前國內第三代以及第四代半導體產業上,產學研結合模式走得較為順暢,可以期待未來幾年里,包括氧化鎵、金剛石在內的第四代半導體材料在國內迎來更多的突破。
來源:核芯產業觀察